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ABSTRACT

We present a generic statistical deformable model for gray
levelmedical images and propose to use it for templatematch-
ing. Template matching methods usually rely on the arbitrary
choice of a cost function and a template. Statistical mod-
els, on the other hand, allow us to derive optimal learning
and matching algorithms from the modeling assumptions us-
ing likelihood maximization principles. We test the statistical
deformable model on the automatic anatomical landmark de-
tection in brain MRI, and compare its performance with the
sum of squared differences (SSD), a reference cost-function
for intensity-based template matching.

Index Terms— statistical models, deformable template,
anatomical landmarks

1. INTRODUCTION

Deformable template models (see e.g. [1]) have been broadly
used in numerous applications in medical imaging, such as
image segmentation, image registration and shape analysis.
The matching of the template onto an image is generally writ-
ten as the optimization of an energy function composed of the
sum of two weighted terms: the data attachment and the reg-
ularization terms. Many energy functions resulting from dif-
ferent choices have been proposed [2]. While some of them
perform well, the need of tailoring the cost function to the
problem prevents from developing generic deformable mod-
els. However, when the images are modeled by a statistical
deformable model [3, 4, 5, 6], it is possible to derive from the
modeling assumptions both learning and matching algorithms
using generic principles such as likelihood maximization. In
this paper we propose a statistical deformable model of the
image intensity and show how it can be used to derive intu-
itive yet mathematically sound algorithms to solve the prob-
lem of automatic landmark detection. We compare the result-
ing algorithmwith the well-known sum of squared differences
(SSD), a reference cost function for intensity-based matching
[7]. Performance is assessed on the detection of four land-
marks on two sets of 2D brain MRI.
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2. INTENSITY DEFORMABLE MODEL

We denote by Λ a finite lattice of R
d (d = 2 or 3). At each

pixel s ∈ Λ a real value x(s) is observed. x ∈ R
S is the

vector of image intensity with S the number of pixels. We
denote by y ∈ R

dK , a set of K landmark locations in an
image of dimension d. Both the image x and the landmark
locations y are modeled as continuous random vectors. Let us
further denote by x0 a template image defined on a finite grid
of pixels ΛT , in which the landmarks lie in a fixed reference
configuration ȳ. In the deformable model setting an image is
assumed to result from the action of a random deformation
on a template image x0. The deformation maps the reference
landmark location ȳ to its position y in the image. We denote
by fy(i) a smooth deformation that maps the template gridΛT

onto the ith image grid Λi, such that: fy(i)(ȳ) = y(i).

2.1. Deformation Model

We use a spline-based deformation model in which the de-
formation is parameterized by the displacement of the land-
marks. It is extended to the rest of the image support by spline
interpolation.

∀t ∈ ΛT , fy(t) =

K∑
k=1

κ(t, ȳk)βk, (1)

with βk ∈ R
d. For a given kernel κ, under mild conditions,

there exists a unique deformation fy(t) that matches the refer-
ence locations ȳ to a specific landmark configuration y in the
image. We choose κ to be a Gaussian kernel because of its
simple analytical expression and because of its local support.
When both the kernel and the reference landmarks are fixed,
the landmark localization problem can be seen as a template
matching problem, i.e. it is equivalent to find the location
of the landmarks or to find the transformation that maps the
template to the image.

2.2. Deformable Intensity Model

The Deformable Intensity Model (DIM) encodes the joint
probability of the image intensities and of the landmark lo-
cation p(x, y). We choose an flat prior p(y), which assigns
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the same probability to all locations in the image, hence it
is enough to work on the conditional distribution p(x|y). As
it is often the case in generative models of images, we will
assume statistical independence of the image intensities given
the location of the landmarks. Thus, the conditional proba-
bility can be written as a product over the image pixels. We
assume that the intensity x(s) follows a Gaussian distribution
whose parameters

(
x0(f

−1
y (s)), τ2(f−1

y (s))
)
depend on s

and on the location of the landmarks, ∀s ∈ Λ,

x(s) = x0(f
−1
y (s)) + ε(s), ε(s) ∼ N (0, τ2(f−1

y (s))). (2)

Instead of a template image x0, we introduce a probabilistic
template, which assigns to each location t ∈ ΛT a Gaussian
distribution of parameters (x0(t), τ

2(t)). We denote π(u, t)
the probability of observing the intensity u at the pixel t ∈
ΛT . The log-likelihood of an image x, given that the land-
marks lie in y, has the following form:

�(x|y; x0, τ
2) =

∑
s∈Λ

ln π(x(s), f−1
y (s))

= −
∑
s∈Λ

[
(x(s) − x0(f

−1
y (s)))2

2τ2(f−1
y (s))

+ ln τ(f−1
y (s))

]
. (3)

It is the same cost function as SSD, except that the variance
τ depends on the location in the template, and therefore on
the deformation fy parameterized by the location of the land-
marks.

3. MODEL SELECTION USING A TRAINING SET

3.1. Maximum Likelihood Estimation

We denote by xN
1 ∈ (RS)N the training set ofN images, and

by yN
1 ∈ (RdK)N the location of the landmarks in the training

images. We denote by x an image of the testing set. First,
the model parameters, i.e. (x0(t), τ

2(t)), ∀t ∈ ΛT , need to
be estimated. We maximize the likelihood of the training set
with respect to the model parameters:

(x̂0, τ̂
2) = arg max

x0,τ2
�(xN

1 |yN
1 ; x0, τ

2). (4)

Then, for a new image x, the location of the landmarks is
predicted by the maximum likelihood estimate of y given the
model parameters learnt during training:

ŷ = arg max
y

�(x|y; x̂0, τ̂
2). (5)

3.2. Direct Estimation of the Deformable Model

Two issues arise when trying to maximize (4). Depending
on the training image i, different locations in the template
f−1

y(i)(s) ∈ ΛT correspond to a fixed pixel s ∈ Λ. There-
fore the training images need to be registered before learning.

However, even though we assume that the inverse off (i)
y ex-

ists for all image i, its inverse does not need to admit a simple
analytical form. To avoid computing the inverse deformation
and to overcome the estimation issue, we propose to approx-
imate the likelihood function by a change of variable. First,
the sum over all the pixels of the image support is approxi-
mated by the integral over the same image support. Then, for
each image i, we perform the change of variable s = fy(i)(t),
and denote by |Jf

y(i)
(t)| the absolute value of the deforma-

tion Jacobian at t. The likelihood �(xN
1 |yN

1 ; x0, τ
2) becomes:

N∑
i=1

∑
s∈Λi

ln π(x(i)(s), f−1
y(i)(s)) (6)

≈
N∑

i=1

∫
f
−1

y(i)
(Λi)

ln π
(
x(i)(fy(i)(t)), t

)
|Jf

y(i)
(t)|dt, (7)

≈
N∑

i=1

∑
t∈ΛT

ln π
(
x(i)(fy(i)(t)), t

)
|Jf

y(i)
(t)|. (8)

Finally, each integral is discretized and approximated by a
sum over the template grid locations t ∈ ΛT . In consequence
it is possible to change the order of the sums and simplify the
joint optimization. The maximization is performed indepen-
dently at each pixel of ΛT . The parameter estimates can be
written in closed form: ∀t ∈ ΛT ,

x̂0(t) =

∑N

i=1 x(fy(i)(t))|Jf
y(i)

(t)|∑N

i=1 |Jf
y(i)

(t)|
, (9)

τ̂2(t) =

∑N

i=1

[
x(fy(i)(t)) − x̂0(t)

]2
|Jf

y(i)
(t)|∑N

i=1 |Jf
y(i)

(t)|
. (10)

Note that the Jacobian weights the intensity samples coming
from the training images. The template estimation consists in
registering the training images based on their landmark corre-
spondences, and averaging the intensity values, weighted by
the Jacobian value. Because the deformations have a local
support and because the landmarks are sparsely distributed in
the image, the registration is expected to be better around the
landmarks than at further distance. It means that the intensity
variance τ2 will be lower around the landmarks than at further
distance, as depicted in Figure 1.

4. LANDMARK DETECTION

We use likelihood maximization to estimate the location of
the landmarks y in a new image x, using the parameters learnt
during training (x̂0, τ̂ ).

4.1. Optimization Method

The optimization is performed by a steepest gradient ascent
combined with a line search method to optimize the step size
at each iteration.
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Fig. 1. Probabilistic Template. Left: average intensity, Right:
standard deviation of the intensity. The top line represents the
average intensity image, i.e. without registering the images
first. The second line corresponds to the estimated template,
i.e. after landmark-based registration of the training images.
The red crosses represent ȳ.

1. Initialize the gradient ascent with y ← ȳ,

2. Iterate until convergence:

(a) Compute∇y�(x|y; x̂0, τ̂
2),

(b) a ← argmax
a≥0

�
(
x|y + a∇y�(x|y; x̂0, τ̂

2); x̂0, τ̂
2
)
,

(c) y ← y + a∇y�(x|y; x̂0, τ̂
2).

To avoid computing the inverse f−1
y in (3), we approximate

the likelihood as we did in section 3.2. It only affects the
numerical computation of the likelihood and its gradient.
We validated numerically this approximation on synthetic
images, cf. [8].

4.2. Local Intensity Matching for Landmark Detection

Notice that the likelihood increases if the intensities of the
deformed template matches the intensities of the image.
When using SSD, the noise parameter τ which corresponds
to the variance of the Gaussian distribution model, is constant
throughout the template, such that all pixels have the same
weight. Because the variance in DIM varies depending on
the location in the template, for a same intensity difference,
the pixels with lower variance contribute more to the cost
function. Since the pixels surrounding the landmarks have
lower variance, they have a greater weight in the likelihood
variations.
Similarly to matching methods based on SSD, if the in-

tensity distribution in the image differs significantly from the
template intensity distribution, the best match in terms of like-
lihood may not correspond to the geometric match.

5. DETECTION RESULTS

5.1. Description of the Images

We use 47 T1-weighted Magnetic Resonance (MR) brain im-
ages acquired on a Philips-Intera 3-Tesla scanner, with resolu-
tion 1mm3, encoded in gray-level intensity between 0 and 255
after normalization. Brains were first manually transformed
into standardized Talairach space to provide a canonical ori-
entation and approximate alignment. In that orientation a spe-
cialist located manually some anatomical landmarks. The first
data set is made of the mid-sagittal plane and contains the
splenium of the Corpus Callosum. The splenium tip (SCC1)
is defined as the most posterior extent of the corpus callosum
and SSC2 is defined as the lower extent of the Splenium of the
Corpus Callosum. The second data set is made of the sagit-
tal slice that contains the Head of the Hippocampus (HoH),
defined as the furthest extent of the hippocampus (in anterior
and inferior direction). The main challenge to locate HoH
is the absence of a visible contour around the hippocampus
head. The Hippocampus Tail (HT) is defined as the furthest
extent of the hippocampus (in posterior and superior direc-
tions) on the same sagittal slice. 17 images are sampled ran-
domly from the data set and kept aside for testing. The re-
maining 30 images are used for training.

5.2. Detection Results in brain MRI

We train the model with σ = 7 pixels. The learnt template
is represented in Figure 1. After training, landmarks are de-
tected on the 17 test images. The Euclidean distance between
manual landmarks and estimated landmarksmeasures the per-
formance of the algorithm. We compare the performance of
DIM and SSD, using the same deformation model and a gra-
dient method. In addition we test the effect of neglecting the
Jacobian for the estimation of the template. We denote these
experiments DIM-A and SSD-A. ”Initial” represents the dis-
tribution of the landmarks before detection.
Figure 2 presents the performance of the 5 predictors on

the simultaneous detection of SCC1 and SCC2. All estima-
tors produce better localization results than ”Initial”. We use
a Wilcoxon test to assess the difference between the estimator
performance. For SCC1 comparing DIM and SSD, we obtain
a p-value of 0.0850. The p-value comparing DIM and DIM-A
is 0.8904. As for SCC2, SSD and DIM perform equally.
Figure 3 presents the spatial repartition of the detection

error of DIM around the real landmark locations. Notice that
the error is locally aligned with the contour of the structure.
We study the effect of the kernel parameter σ on the de-

tection performance. We vary the spline kernel standard devi-
ation between 3 and 15 pixels. For larger standard deviation,
the displacement of the landmarks influences a larger amount
of pixels around the landmarks and therefore the size of the
discriminative pattern increases.
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Fig. 2. Top: Performance of the 5 estimators for the predic-
tion of SCC1 and SCC2. Bottom: Localization error and ker-
nel parameter choice for 4 anatomical landmarks in the case
of DIM with variable kernel standard deviation.
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Fig. 3. Spatial representation of the detection error. The
background image represents the template intensity average
x0. The red crosses correspond to ȳ, the black crosses to the
initial distribution of the localization error and the green cir-
cles to the residual error after detection.

Figure 2 also presents the performance of DIM with
different kernel parameter values. The best performance is
achieved for a standard deviation of 10 pixels. Depending
on the landmark, the detection performance is more or less
sensitive to the choice of the kernel parameter. The detection
of HoH, for example, is quite good for DIM10. It deteriorates
though in the case of DIM5 because the discriminative pattern
is not large enough and slides along the white-gray boundary.

6. CONCLUSION

We have shown how the proposed statistical model can be
used to derive template estimation and image matching algo-
rithms. Themethod adapts to a variable number of landmarks,
which means that it could be extended to other applications
such as registration or segmentation.
The model we presented could be made more accurate by

adding hidden variables and/or parameters. One can expect
the estimation algorithm to become more complicated. Sim-
ilarly the model could deal with other features of the image
such as edges or even tissue type. However the main motiva-
tion of this paper is to emphasize that statistical models make
it possible to derive unified algorithms and to relate modeling
assumptions to changes in the algorithm, avoiding the arbi-
trary choice of a cost function.
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